
AFCRL-66-762

C~nL'fTL-Tf- A PrTr%'T A W?r% VVmVy I"

J11%.011 £II14.J U i 1JA fý.M T!IIJN

OF A TRANSFORMATIONAL GRAMMAR

Peter S. Rosenbaum
and Fred Blair

INTERNATIONAL BUSINESS MACHINES CORPORATION
Thomas J. Watson Research Center

Post Office Box 218
Yorktown Heights, New York 10598

C L E A R'IN GH'0U S E :;ontract No. AF 19(628)-51271-- F)R FEDERAL SCIENTIFIC AND

S 'ECHNICAL INFORMATION Project 4641

Aa.irdooW I Nicrofichel SV $. Task 464102
3

F1NAL REPORT October 1966

Period Covered: July 1965 through September 1966

i '

Prepared
for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIEJ Ju_..
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS 01730

Distribution of this Document

is Unlimited.

-£. -

AFCRL-66-762

SPECIFICATION AND UTILIZATION

OF A TRANSFORMATIONAL GRAMMAR

Peter S. Rosenbaum
and Fred Blair

INTERNATIONAL BUSINESS MACHINES CORPORA TION
Thomas J. Watson Research Center

Post Office Box 218
Yorktown Heights, New York 10598

Contract No. AF 19(628)-5127

Project 4641

Task 464102

FINAL REPORT October 1966

Period Covered: July 1965 through September 1966

Prepared

for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS 01730

Distribution of this Document

is Unlimited.

Abstract

* This report summarizes research carried out at the

Thomas J. Watson Research Center in three areas of compu-

tational linguistics. These are 1) the design and deveiopment

of a transformational grammar for a subset of grammatical

sentences in English, 2) the implementation of this grammar

in terms of a sentence synthesizing program written in LISP

1. 5, and 3) the use of sentence synthesizing programs for

transformational grammars generally.

The transformational grammar described provides a

semantically interpretable deep stracture and a phonologically

interpretable surface structure for a set of English sentences.

Surface structures are derived from deep structures by trans-

formational rules. The sentence types characterized by the

grammar include noun phrase complementation, verb phrase

complementation, relative clauses, two types of question sen-

tences, indirect object and prepositional phrase constructions,

passives, aspectual constructions, and certain types of nega-

tion phenomena.

The sentence synthesizing program provides a facility

for generating deep structures and surface structures. Fur-

ther, it makes use of prototype fast-failprocedures which, in

many cases, obviate either completely or partially the so-called

proper analysis test for the applicability of transformations.

Observations on the use of the sentence synthesizing

program include 1) an analysis of the results obtained in using

the program as a device for evaluating the descriptive ade-

quacy of the grammar and 2) a discussion of the methodological

limitations imposed upon the use of the program by factors

inherent in the linguistic subject matter.

- -qmm m~

LIST OF CONTRIBUTORS

F. Blair

D. Lieberman

D. Lochak

P. Postal

P. Rosenbaum

-All

1. 0 INTRODUCTION

This paper is a report on basic, research activities

directed toward the specification, development, and computer

utilization of grammatical descriptions consistent with the

advan1ces in linguistic theory 1- -ually subsumed under the ru-

bric of transformational linguistics. Our primary concerns

have been 1) the specification of a descriptively adequate

transformational grammar for English, and 2) the develop-

ment of prototype computational procedures for testing the

descriptive adequacy of transformational grammars of ad-

vanced design. In addition to a discussion of these topics,

this report gives brief attention to our experiences in using

the prototype sentence synthesizing program (SSP) and to

program design considerations arising from our experiences.

2.0 THE IBM ENGLISH GRAMMAR I

2. 1 General Properties

In its linguistic essentials, the IBM English Grammar l

(Grammar I) conforms to the most important of the recent

4theoretical discoveries in transformational linguistics.2 In

particular, sentences in English characterized by Grammar I

are assigned two levels of representation; they are assigned a

dee structure and a surface structure. Deep structures, gen-

erated by context-free rewriting rules, determine the seman-

tic interpretation of sentences. Deep structures are mapped

into surface structures by transformational rules. Thus, all

P1: surface structures derived from a common deep structure

4 through the application of transformational rules are

2

synonymous necessarily. Deep structures, surface structures,

and intermediate transformationally derived structures are

formally represented by labelled bracketings known as

P-markers.
3

Deep structures are composed of categorial symbols

such as S, NP, VP, (sentence, noun phrase, verb phrase) and

lexical items consisting of a phonological distinctive feature

matrix (abbreviated in Grammar I) and a syntactic feature

vector specifying various inherent, distributional, and rule

determining properties of particular lexical entries. (A sam-

ple deep structure is provided in Appendix I.) Categorial

symbols are introduced by context-free rewiting rules (Cf.

Appendix II for the rewriting rules of Grammar I) and lexical

items are introduced into P-markers subject to various semi-

transformational distributional constraints. (Cf. Appendix III

for a sample lexicon.)

The domain of a particular transformational rule is

provided in terms of conditions on P-markers. Any P-marker

or set of P-markers meeting the conditions imposed by a par-

ticular rule falls under the domain of that rule. By way of

clarification, consider the following hypothetical transforma-

tional rule.

(1) B + C D X

1 2 3====>

1 0 3

The numbered sequence of elements comprising the

first two lines of the above rule (referred to as a structure

irndex) defines the set of P-markers which may undergo the

3

transformational alteration stated in the third line of the rule.

The structure index can be interpreted as asserting that any

terminal string (last line of a P-marker) falls under the do-

main of the transformation (1) just in case it can be com-

pletely segmented into three consecutive substrings such that

the first is a (member of the constituent or category sequence)

B + C, the second is a D, and the third is anythina at all. The

diagram (2) contains a P-marker which falls under the domain

of the transformation (1).

(2)

The terminal string of (2), i.e., E - F - C - G tI - M - N,

can be segmented in such a way that the conditions stipulated

by the structure index are met. Transformational rules stated

in this fashion have the power of variable reference since each

structure index characterizes a variety of P-markers. For

example, the transformation (1) would be defined on the P-

marker (2) regardless of the constituency dominated by B. If

the phrase structure component from which this P-marker

was constructed contains the rule B ---- > E + L + S, then an

infinite number of P-markers are provided (since S, the sen-

tence node, is recursive), all of which will fall under the do-

main of the transformation (1). Conditions imposed by trans-

formational rules on P-markers include conditions on syntac-

tic feature composition as well as on phrase structure. For

instance, for the transformation (3), a P-marker falls under

__ __ __ __ __ _

4

its domain just in case it contains some constituent L which

dominates a syntactic feature vector containing the feature

(+human).

(3) X [(+human)]L Y

1 2 3====>

1 0 3

Transformational rules often involve two special types

of restrictions. The first of these is dominance where some

subtree in a P-marker must either have a certain analysis or

must dominate some particular subtree. The second type of

restriction is identity where a subtree must be identical or not

identical to some other subtree.

A transfoxmational rule specifies a finite sequence of

formal operations called elementary transformations. The

elementary transformations employed in Grammar I are as

follows:

I. Substitution, where one subtree is substituted for

another subtree.

2. Deletion, where a subtree is deleted.

3. Sister Adjunction, where a subtree is introduced

under the immediate domination of some constituent which

immediately dominates at least one other constituent.

4. Daughter Adjunction,4 where some subtree is in-

troduced under the immediate domination of some consti-

tuent which does not dominate any other constituent.

Transformational rules are ordered and are either

cyclic 5 or op_.-cyclic. Cyclic rules apply to a lowest S in a

deep structure where a lowest S is defined as any sequence of

5

terminal symbols 1) bounded left and right by sentence bound-

aries (#), 2) analyzable as an S, and 3) not containing any

sentence boundaries except for those mentioned above. The

final cyclic transformation deletes the sentence boundaries

and, if the lowest S condition is still met, that is, if the sen-

tence to which the cyclic rules were applying is an embedded

sentence, the set of cyclic transformations reapplies. Other-

wise, the set of post-cyclic transformations applies to the

highest S, namely, one not dominated by S. The full set of

cyclic and post-cyclic transformations of Grammar I is given

in Appendix IV.

2. 2 IBM English I

IBM English I (English I) is the subset of English sen-

tences generated by Grammar I. Although the physical di-

mensions of Grammar I's rewriting rules are small (Cf. Ap-

pendix II), the system is relatively powerful. This power

stems from the recursiveness of the initial symbol, S, under

the domination of the verb phrase (VP), the noun phrase (NP),

and the determiner (DET). The expansions of VP are of par-

ticular interest.

(4) VP ---- >V S

(5) VP ---- > V NP S

These expansions provide a deep structure characterization

for the syntactic phenomenon of intransitive and transitive

verb phrase complementation respectively. Transformed,

these expansions give rise to the surface structures of sen-

tences like (6) and (7).

6

(6) John condescended to play ball.

(7) John tempted Bill to play ball

Of equal importance are the two types of noun phrase

complementation which arise through the expansions of NP

given in (8) and (9).

(8) NP ---- > DET N S

(9) NP ---- >N S

These expansions yield a wide range of sentences including
6

the following:

(10) a. the fact that Tohn came late worries me

b. it appears that John is honest

c. John appears to be honest

d. we stopped worrying

e. I dislike being here

f. she believes it to be true that life is good

The phenomenon of noun phrase complementation is extremely

productive since NP's appear in diverse positions in deep

structure; noun phrase complementation arises in all distri-

butions.

In addition to the complex sentence formations de-

scribed above, Grammar I characterizes such simple sentence

phenomena as question formation (both the so-called "yes-no"

questions and the "wh" questions), aspect, passive formation,

certain types of negation phenomena, and, at the transforma-

tional level,7 certain indirect object and prepositional phrase

constructions. A set of sentences contained in English I which

illustrates the major generative properties of Grammar I is

7

provided in Appendix V.

2. 3 Deficiencies of Grammar I

Formal grammars invariably suffer from at least

three types of deficiency: incompleteness, incorrectness,

and theoretical slack. The general nature of these deficien-

cies is illustrated below with respect to Grammar I.

2. 3. 1 Incompleteness

It is a truism that no grammar constructes in the

foreseeable future will generate all and only the sentences

of an arbitrary natural language. There are a number of

reasons for this, but acknowledgement simply of the immen-

sity of natural language suffices. Since there is no reason

a priori to assume that the completeness of a grammar is

either necessary or sufficient for the computational utiliza-

tion of formal grammars of portions of natural languages, it

is important to recognize the bases of grammatical incom-

pleteness. In so doing, it becomes clear that certain types

of incompleteness are more susceptible to remedy than are

others.

First, a grammar may intentionally omit treatment of

a particular topic. For example, Grammar I does not deal

with any form of conjunction. The reason for this is that

theoretical support for the description of conjunction has been

lacking. Only recently have theoretical developments indi-

cated that a descriptive study of this phenomenon might be-

come profitable.8 It is currently expected that Grammar III

will contain the results of such research.

Second, a grammar may be incomplete because of

8

simple oversight. To draw again on Grammar I, the formula-

tion of the passive transformation in this grammar does not

allow for the generation of passive sentences containing as-

pectual morphemes. 9 That is, Grammar I generates "John

is teased by silly girls", but not "John is being teased by

silly girls." Needless to say, such oversights are easily

remedied.

2. 3. 2 Incorrectness

A grammar makes claims about the structure and

derivation of well-formed sentences. Often, such claims

turn out to be incorrect. Incorrectness may stem from a

number of causes.

First, a grammar may be incorrect because it is

incomplete. For example, in generating the "non-exceptional"

sentence "John didn't want to behave himself", Grammar I

provides a mechanism which incorrectly predicts the gram-

maticality of "*John said to behave himself." The problem

here is that Grammar I lacks a mechanism for dealing with

exceptions. The grammar is not basically wrong; it is sim-

ply incomplete, and this incompleteness leads to incorrectness.

Second, and far more embarrassing, a grammar may

be linguistically incorrect thereby providing an incorrect

analysis for generated sentences. For example, by allowing

both progressive and regressive deletion in relative clause

formation, Grammar I makes the incorrect claim that sen-

tences (I1) and (12) are synonymous.

(11) I discovered the mountain which John is admiring

(12) I discovered which mountain John is admiring

9

2. 3. 3 Theoretical Slack

Theoretical slack means simply that the linguistic

theory in terms of which a grammar is constructed is insuf-

ficiently specific to allow a choice among competing descrip-

tions of the same phenomenon. Grammar I, for example, is

based upon a version of linguistic theory which allows various

properties of nouns, verbs, and adjectives to be described in

the deep structure either in terms of constituent structure or

in terms of syntactic features subcategorizing nouns, verbs,

and adjectives. To take a specific case, number on nouns

may be viewed either as a constituent under the domination of

NP, as specified in the rewriting rules of (13), or as the syn-

tactic feature (singular) positively or negatively specified

(where (+singular) indicates a singular noun and (-singular)

indicates a plural noun).

(13) NP ---- >N NU (S)

NU --- > f SingularNU ... > Plural I

Grammar I adopts the feature analysis of number, but this

analysis is not theoretically determined. From the point of

view of the linguistic theory, this analysis is arbitrarily

selected. 1 0

2. 4 Directions in Ongoing Grammatical Research

An attempt is currently being made to remedy many

of the deficiencies in Grammar I. Grammar II will correct

the oversights of Grammar I and will, furthermore, treat

such syntactic phenomena as pronominalization, reflexiviza-

tion, genitivization, time and place adverbials, and verb-

preposition restrictions. In addition, corrections in the

analyses are being made, e. g., for progressive and regres-

sive deletion in relative clause formation, and a facility for

the treatment of exceptions is being added.11

Finally, and by far the most important, Grammar II

will be consistent with a revised linguistic theory which calls

for the introduction of grammatical items such as articles,

affixes, prepositions, aspectual morphemes, complementi-

zers, and the like on the basis of the generated syntactic

feature composition of the formatives N (noun) and VB (verbs

and adjectives). The introduction of such items involves the

process of transformational segmentalization. 1 2 It is gen-

erally significant that such a version of linguistic theory pro-

vides a near approximation to universal deep structure. (It

seems clear, in any case, that potential computer applica-

tions involving the analysis of English sentences will be

greatly facilitated by the removal of material entirely idio-

syncratic to English from the deep structure.) The phrase

structure rewriting rules for Grammar II are given in Ap-

pendix VI.

3. 0 THE IMPLEMENTATION OF A SENTENCE
SYNTHESIZER

3. i General Description

A computer program for synthesizing sentences on

the basis of Grammar I was implemented as several functions

in LISP 1. 5. The top level function, Deriv[I, requires an

expanded grammar 1 3 and a set of derivation control cards.

The latter consists of i) a rewriting subrule 1 4 specification

for the generation of a particular deep structure (syntactic

feature vectors being also introduced by such rules in an ad

hoc manner) and 2) a specification (possibly null) of the

optional transformational rules whose applicability is to be

tested. Deriv[], in generating deep structures, sequentially

tests each rule in the expanded grammar for applicability.

Establishing the applicability of a rule, Deriv[] determines

whether a subrule of this main rule is specified on a deriva-

tion control card. Upon success, the subrule so specified is

applied. For deep structure generation, rule application in-

volves the replacement of the applicable left-hand symbol

found in the current terminal string of symbols with the right-

hand constituency of the specified subrule. At the same time,

a P-marker is constructed which reflects the current state of

the deep structure. Upon successful subrule application, a

new derivation control card is read and the applicability of

the same rule is retested. When a rule is not applicable,

Deriv[] proceeds to test the applicability of the following rule.

Deriv[] provides a printed record of the subrule applied, the

current P-marker, and the current terminal string. Deriv[]

applies in cycles to each unexpanded S node. When no more

unexpanded S's remain, Deriv[] calls Derivtrans[], which

tests the applicability of all obligatory transformations and

the specified optional transformations, and converts the deep

structure into a surface structure by applying transforma-

tions to current P-markers falling under their domain.

Derivtrans[] proceeds sequentially through the trans-

formational rules of the expanded grammar testing each for

12

applicability. In the event that a proper analysis is obtained

(i. e., where the pattern specified in the structural index of a

transformation is found in the current P-marker), Deriv-

trans[] calls Dotran, which applies the transformation to the

P-marker under either one of the following two conditions:

First, the transformation is obligatory. Second, the trans-

formation is an optional transformation specified on the cur-

rent derivation control card. Derivtrans[] tests the set of

cyclic transformations for each deepest S. When no more

deepest S's remain, this function tests the applicability of the

set of post-cyclic transformations.

3. 2 The Pattern-Matching Function: Syntax and

Semantics

The heart of Derivtrans[] is the procedure for ob-

taining a proper analysis in a current P-marker. The function

P-a allows the specification of the patterns in the structure

indices of transformations and identifies these patterns in P-

markers. This function has the following form:15

(14) P-a[(node:list); (pattern); (names); (m:pairs)J

3. 2. 1 Syntax and the Modeling of Transformations

Subtrees in P-markers are represented as LISP s-

expressions. Consider for example, the P-marker below.

(15)

DET N V NP

DET N

I-I

13

t.

This P-marker is represented as the following s-expression.

(16) (S(NP(DET)(N))(VP(V)(NP(DET)(N))))

The first argument to P-a is a list of sister nodes,

(node:list) := ((node)*). A node is a constituent and all the

constituents which it dominates in a P-marker, (node) :=

(constituent) (node)*) and (constituent) := (atom). For

instance, the node NP in the P-marker (15) is represented

as follows:

(17) (NP(DET)(N))

A representative list of sister nodes supplying a first argu-

ment to P-a might be the following:

(18) ((NP(DET)(N))(VP(V)(NP(DET)(N))))

The second argument to P-a, (pattern), is a list con-

sisting of an optional left-anchor16 followed by an indefinite

number of pattern elements to be matched, (pattern) :=

({$O i'} (pattern:element)*).

The third argument to P-a, (names), is a list of

names, (names) := ((name)*), where (name) := (identifier)

I (number). For each member of the pattern list there is a

corresponding name on the names list. Names are used to

index matched nodes for subsequent reference. The conven-

tion in this system is to supply positive integers beginning

with i as names.

The fourth argument to P-a, (m:pairs), is a list of

names paired with the matched nodes indexed by these names,

(m:pairs) := (((name){(node)I (node:list) I (m:pairs)))*).

6

14

* Pattern elements are of especial interest because they

characterize the devices available to the linguist in modeling

structure indices.

(19) (pattern:element) := ()INIL}I (literal)

I (alternation) 1 $1 (special:form) I(p:form)

The pattern element {()I NIL} is the empty pattern element

and is used to model optional non-empty patterns in a struc-

ture index. The pattern element (literal) specifies the con-

tent of a node to be matched. This element thus models the

constituents in a structure index. Sets of alternative pattern

elements are modeled as an alternation, (alternation) :=

(=OR (pattern:element)*). The pattern element $ models

the structural variables often found in transformational rules.

The pattern element (special:form), where (special:form) :=

(conjunction) I (matching:function) I (dominance: constraint),

is used by the linguist to model conjunctions within an alter-

nation, to introduce special matching conditions such as

identity and constraints on syntactic features, and to test

constraints on dominance of elements within structure in-

dices. Finally, (p:form), which was not employed in

Grammar I as a pattern element, is of use in matching un-

usual tokens such as +, $, etc.

3. 2. 2 The Pattern-Matching Algorithm

P-a attempts to find a proper analysis for a pattern

specification in various ways depending upon the character

of the pattern elements in the pattern specification. Begin-

ning with some candidate node, P-a tries to match the first

t15

pattern element with that node. On success, P-a tries to

match the next pattern element with the next contiguous node 1 7

in the P-marker. If all pattern elements are matched suc-

cessfully, the function returns as its value a list of matched

nodes and names (m:pairs) paired with the then current can-

didate node (which may be null). If a pattern element fails to

match a candidate node, the left-hand daughter of the current

candidate node becomes the candidate node and the function is

reapplied. If, under these circumstances, no left-hand

daughter exists, then the function has not found a proper

analysis and returns NIL.

Various pattern elements affect this procedure in

various ways. The null pattern element causes the current

name to be paired with the empty fragment (empty list) and

added to the mpairs list. The literal pattern element matches

only nodes whose content is identical to itself. The alterna-

tion pattern element causes a match just in case one of the

successively examined patterns causes a match when sub-

stituted for the alternation as the current pattern element,

The element $ matches a fragment (an indefinitely

long list of nodes) in the following manner. If the current

name does not appear on the mpairs list, the name is paired

on the mpairs list with the empty fragment.

1. If a proper analysis can then be found for the rest of

the current pattern (the pattern elements remaining to the

right of the $ element) beginning with the current candidate

node, this proper analysis is given as the resulting mpairs

list (i.e., P-a [nodes; cdr[pattern]; cdr[names]; m:pairs].

nu m m • • w mmum mI

16

2. Otherwise, the current candidate node is appended to

the current $ fragment to yield mpairs' and the next contigu-

ous node is taken as a current candidate'. If, on applying P-a

recursively, a proper analysis is found for the current pat-

tern (with the current $ as first element) beginning with the

current candidate', then that proper analysis is given as the

resulting mpairs list, (i.e., P-a [nxtcontiguous[node:list];

pattern; names; m:pairs']). In this way the $ is extended

over next contiguous nodes.

3. On the failure of both 1 and 2, the left-most daughter

of the current candidate node examined in I (not the current

candidate') is taken as the new current candidate node and

step I is reinitiated. If no such left-hand daughter exists,

then the pattern match fails and the value of P-a is NIL.

3. 2. 3 Some Further Syntactic Considerations

Within P-a, pforms, where (p:form) := (QUOTE

(s-expression)) I (back:reference) I (subscript:reference)

I (* (form)) I(*K (arg)*), are used ina variety of ways.

First, inasmuch as certain possible node contents are not

allowable as literals, e. g., $, the pattern element pform

provides a useful facility. A pform is first evaluated and

the resulting value is taken as a literal. The value of the

pform (QUOTE (s-expression)) is simply the associated s-

expression. If a node previously matched is required, e. g.,

as is often the case in special forms, either a back reference,

where (back:reference) := (name), or a subscript reference,

(subscript:reference) := (S/name*), must be employed. The

pform (* (form)) causes the form to be LISP evaluated,

4 m m

17

e. g., (* DOLLAR) yields $. Finally, argument functions

yield as values the values of the LISP function, (function),

applied to the evaluated arguments. This dev.ce makes

available the full power of the LISP language for the genera-

tion of arguments.

The pattern element (special:form) is either a con-

junction, a matching function, or a dominance constraint.

The value of a successful special form is an repairs list

rather than a node or list of nodes. Thus, mpairs lists may

appear on mpairs lists and elements of such "contained"

mpairs lists must be referred to by subscript references.

Conjunction, where (conjunction) := (=AND (pattern:

element)*), treats a pattern as a pattern element, as in an

alternation wi-_re an alternate is a sequence of nodes.

Matchin, functions 1 8 provide an escape mechanism

from the matching algorithm. This device allows the linguist

to state a very wide range of special conditions on P-markers

not otherwise specifiable. Consider the following matching

function form:

(FN (function) argI arg2 ... argn)

(function) is a LISP defined function of n+I arguments where

the first argument, the current candidate node, is implicitly

supplied by the pattern element interpreter. Matching func-

tions obey the following conventions:

1. If the matching function fails, it returns the value NIL.

2. On success, the matching function returns a non-null

value (usually an mpairs list).

18

P-a does not descend into syntactic feature vectors 1 9

(complex symbols). Where conditions on transformations in-

volve complex symbols for Grammar I, they are implemented

in terms of the following special matching functions.

1. (FN FEATURE arg1 arg2), where arg1 evaluates to a

terminal node (e. g., N, V) dominating a syntactic feature

vector and where arg2 evaluates to a list of features which

must be contained in the feature vector. Consider, for ex-

ample, the "WH pronoun" transformation.

(20) X DEF [(+PRO) W +Y
I (+Sg) 11N

1 2 3 4====>

1 2 0 4

The structure index for this transformation is modeled as

follow s:

(21) ($ DEF N WH (FN FEATURE 3 (QUOTE(/Sg /PRO))))

2. (FN ALPHA arg1 arg2) is identical to the above FN

except that the coefficient of the syntactic feature(s) of arg2

is ignored. This matching function is useful for modeling

structure indices employing the variable coefficient, e. g.,

(aC), in the Complementizer Placement Transformation.

The syntax of a dominance constraint on P-markers

is as follows:

(22) (dominance:constraint) := (* (arg) (pattern))

The first argument specifies a previously matched node. The

second argument is the pattern to be matched in the subtree

dominated by the node specified by the first argument. The

value of the pattern element is either an mpairs list, on suc-

cess, or NIL. The structure index

A B [C D]E

1 2 3 4

is modeled as follows:

(23) (A B E(*** 3(QUOTE ($0 C D))))

3. 3 The Pattern Transformation

P-markers are transformed by the LISP function

Dotranru; tr; ct] where u is an mpairs list produced by the

successful application of P-a, ct is the segment of the P-

nmarker falling under the domain of the transformation iden-

tified by its highest node and tr is a list specifying the

transformation.

(tr) := ((replacement)*)

(replacement) := ((arg) (arg)*)

The first argument of a replacement is either a node produced

as the value of a back reference or subscript reference, or

else is an argument function. In the first case, the remaining

arguments specify the nodes which are to replace the node

referenced by the first argument. In the second case, an

argument function may be employed to modify ct in some

other manner than by sister adjunction, substitution, or

deletion.
2 0

Consider how the relative placement transformation

of Grammar I is modeled.

2b

(24) # X ART S N Y#

1 2 3 4 5 6 7====>

1 2 3 0 5+4 6 7

(25) ((// $ ART S N)(4 0)(5 5 4))

Observe that deletion involves replacement of a node by 0.

4. 0 THE LINGUISTIC BASES OF HIGH SPEED SENTENCE
GENERATION

Perusal of the transformational rules in Grammar I

will reveal that structural variables appear quite often as the

first and last pattern elements of a structure index. These

variables capture the linguistically significant generalization

that a particular transformational process is completely in-

dependent of the constituent material falling under the domain

of such variables in a particular P-marker. This generaliza-

tion is not reflected in P-a, which must search through a

P-marker for an occurrence of a pattern element even though

much of the constituent structure which is traversed in this

process may fall under the domain of the structural variable.

Needless to say, such irrelevant searching is time -consuming.

To a certain degree, the situation is salvageable inas-

much as the imposition of an arbitrary depth- of-embedding

constraint on the rewriting rules renders it possible in prin-

ciple to state transformations in terms of literals. In other

words, it becomes possible to specify all of the constituent

structure material ordinarily subsumed under the variable.

At the very least, such a procedure is lingustically distaste-

ful. Worse, however, are the consequences if the grammar

under study is even minimally complex, e. g., handles com-

plementation. Under such circumstances, a vast number of

environments would have to be specified for the most trivial

of rules. Consider, for example, the number of "left" en-

vironments Grammar I would be forced to provide, even if

the depth of embedding were arbitrarily limited, for the

trivial post-cyclic rule which assigns an affi,. to plural nouns.

There is little question that the routine for obtaining a

proper analysis which we have devised is not optimal and that

greater processing ifficiency can be expected in future ver..

sions of SSP. 2 1 Our efforts to solve the problem of the struc-

tural variable have been based on the assumption that the

fastest routine for obtaining a proper analysis is no routine

at all. Less glibly, we have addressed two questions. If a

particular P-marker does not fall under the domain of a

transformation, is it possible 1) to prevent entry into the

proper analysis routine in the first place, and 2) if not, to

achieve a rapid termination of this routine? The answer to

both of these questions is yes. We refer to techniques ac-

complishing these tasks as fast-fail procedures.

4. 1 How Not to Proper Analyze

4. 1. 1 Node Listing

Node listing is a simple procedure for obviating a

proper analysis which takes advantage of the fact that a

necessary (though not sufficient) condition for obtaining a

proper analysis is that the P-marker in question must con-

tain every literal contained in the structure index. Before

the application of P-a, a test is made on the P-marker to

determinE whether it contains a single instance of literals

supplied appropriately with each transformation. This pro-

cedure turned out to be of minimal value since most P-

markers contain most constituents.

4. 1. 2 Sister Listing

Of far greater value is a similar procedure which

tests the P-marker for the sisterhood of two or more con-

stituents mentioned as literals in a structure index. For

example, the Relative Placement Transformation mentions

the sisters ART and S. Node listing would be of little value

since virtually all P-markers contain ART and all P-markers

do, in fact, contain S. The sister listing procedure checks

the current P-marker to determine whether ART and S are

contained somewhere as sisters. Such a test will be suc-

cessful just in case the P-marker contains a relative clause

construction. Otherwise, it will fail and Derivtrans[] will

immediately proceed to the next transformation.

4. 2 The Fast NIL for P-a

4. 2. 1 Terminalizing

Careful study of Grammar I's transformational rules

shows that the literals mentioned in the structure indices of

these rules are quite often terminal symbols, i. e., symbols

which uniquely appear in the terminal strings of P-markers.

This fact suggests the possibility of reducing considerably

the work which must be performed by P-a in the event that

entry into this routine is unavoidable. More specifically,

observe that when the structure index of a transformation

contains only terminal symbols, a search by P-a of the

23

non-terminal constituents of the current P-marker is unneces-

sary. Such redundant searching can be obviated by requiring

P-a to apply to a temporary P-marker, P-marker', which

contains the highest node, S, and the terminal nodes of the

original P-marker, but none of its intermediate nodes. This

"tree pruning" procedure, which turns out to be extremely

valuable and will be even more so for Grammar II, is called

terminalizing.

4. 2. 2 Node Weighting

When entry into P-a is unavoidable and when the struc-

ture index ci the current transformation contains non-terminal

as well as terminal symbols, terminalizing is impossible.

The only fast-fail procedure currently operating in SSP for

reducing the amount of work done by P-a in this instance is

node weighting. This procedure takes advantage of the fact

that the number of eligible proper analysis nodes in the cur-

rent P-marker must always be equal to or greater than the

number of literal pattern elements remaining to be matched.

Under this procedure each pattern element is assigned a weight

reflecting a minimum node requirement for the current P-

marker. Similarly, nodes in the current P-marker are as-

signed weights in accordance with their position in the P-

marker for possible proper analysis. At such time as the

weight of the pattern element exceeds the weight of the node

being examined, P-a terminates.

Grammar 1I, which has considerably different proper-

ties than Grammar I, presents several possibilities for ef-

fective fast-fail procedures. We plan to report on these at a

24

later date.

5.0 THE USE OF THE SENTENCE SYNTHESIZING
PROGRAM

5. 1 Research Goals and Their Consequences

Our conclusions concerning the use of SSP in the

development of English Grammar I only have meaning in

terms of our research goals. Our central research goal in

computational linguistics is to install in an electronic com-

puter a knowledge of natural language (English in the present

case) which reflects the English speaker's ability to relate

the form of a sentence to its meaning. Inasmuch as the im-

mensity of English 2 2 renders impossible a full reconstruc-

tion of this knowledge in the form of a transformational

grammar, our less ambitious goal is to construct a trans-

formational grammar for a subset of English sentences which

is both useful and learnable. The usefulness of such a subset

is completely a function of its expressive power. 2 3 Clearly,

the existence of such a subset is meaningless if this subset

(which, in all likelihood, will be infinite) is not learnable.24

This goal establishes three requirements for compu-

tational linguistic research. The first is to pursue topics in

linguistic theory since it is generally true that the more ad-

vanced the linguistic theory, the more general are the gram-

mars whose form is a consequence of this theory. The sec-

ond is 1) to develop precisely specified grammars which are

descriptively correct with respect to the assignment of deep

structures to surface structures and 2) to study computational

25

procedures for implementing these grammars. The third is

to study the useability and learnability of the subsets of natural

language generated by these grammars. Our views on the use

of SSP are couched in terms of these considerations.

5. 2 General Conclusions

5. 2. 1 Sentence Synthesis and Linguistic Theory

The relation obtaining between linguistic theory and a

sentence synthesizing program is one of specification, in that

the linguistic theory specifies the form of the grammar which

is implemented by the program. This fact is perhaps discon-

certing since, inasmuch as constancy over time has not yet

become a property of transformational linguistic theory, it

suggests the necessity of constant revision for the SSP. In a

weaker moment, one may fancy an SSP which allows a linguist

to make arbitrary changes in his theoretical formulation, but

recognition of the utter nonexistence of discovery procedures

for linguistic theories, i. e., the complete lack of any basis

for projecting future developments, persuades us that such a

device is an impossibility.

It is always possible to take the linguistically and, in

the long run, computationally unfortunate option of theoretical

compromise, thus constructing a theoretically antiquated

grammar for the sake of computation. If, however, the goal

is to develop a grammar that is theoretically sound, it is then

our conclusion that the major responsibility for developing

and maintaining an adequate SSP belongs to the linguist and

not to the programmer. There is no computational procedure

for resolving difficulties inherent in linguistic methodology.

26

5. 2. 2 Sentence Synthesis and the Construction of
Grammars

Eschewing linguistic description for its own sake,

there are two reasons for constructing transformational

grammars. The first of these is to confirm or disconfirm

theoretical hypotheses. Since generative rigor involving the

construction of anything more than a grammatical sketch has

never been a necessary condition for the wholehearted ac-

ceptance or rejection of such hypotheses, the usefulness of a

sentence synthesizing program in the construction of such a

grammar segment is extremely doubtful. On the other hand,

a necessary condition for computer applications based upon

transformational grammars is the generative correctness of

large descriptive grammars. In this respect, a sentence

synthesizing program which tests the rules of the grammar

is a must, as anyone who has studied the mind-warping pro-

perties of complex transformational grammars will readily

appreciate.

It is our observation that the uses of a sentence syn-

thesizing program are most reasonably determined not so

much by the grammar but by the applications requiring the

grammar. Specifically, the facility which is critical to com-

puter applications involving the speaker's knowledge of his

language is the transformational reconstruction of the rela-

tion obtaining between the form of a sentence and its meaning,

between surface structure and deep structure. This relation

is precisely specified by the transformational rules of the

grammar. The implication here is that there is simply no

good reason to provide a computer implementation of those

facilities of a transformational grammar which do not have

direct bearing on the relation betwe-tn meaning and form.

This assertion is reflected in our inability to find any use for

that extensive component of SSP which alows the expansion

of the rewriting rules of Grammar I and the automatic genera-

tion of deep structures. In the testing of transformational

rules, a generative phrase structure component is just so

much baggage, and we normally introduce deep structures

fo-. Derivtrans[] by hand. We are chagrined to have spent

so much time developing a subroutine which turns out to have

neither linguistic nor applicational significance (save perhaps

for an audio- visual aid in Linguistics I). Much as a result

of this unfortunate experience, we have not implemented a

blocking facility for terminating a derivation where two con-

stituents are required to be identical, but, in a particular

P-marker, are not. An adequate transformational grammar

must no doubt provide such a blocking facility, but the neces-

sity for computer implementation of this facility is doubtful

since, on the theoretical hand, the theoretical claim made by

any such blocking device could be trivially evaluated manually

and since, on the applicational hand, deep structures exem-

plifying such cases of non-identity would never arise. A

blocking mechanism in the sentence synthesizing program

itself would provide nothing more than a laboratory curiosity.

SSP is of great value in answering the following ques-

tion: Given deep structure D, does the set of transformational

rules generate surface structure S? Most dramatic are those

cases where the transformations generate an incorrect sen-

tence S1. An illustrative example concerns the transformation

which assigns the affix "s" to plural nouns in Grammar I.

X ((-Sg)]N Y

1 2 3====>

1 2+s 3

rhis rule asserts: If a noun carries the syntactic feature

(-singular) then add an "s" under the domination of this

noun regardless of all other aspects of the environment.

Since P-markers are reanalyzed after the application of a

transformation 2 5 for the reapplicability of the same trans-

formation, the above transformation will and did reapply

indefinitely producing strings like "noun s s s s s ... ".

This consequence resulted from the fact that the morpheme

"s" was subsumed under the variable Y on each reanalysis

by P-a.

Such cases as the above are fairly uncommon. More

often than not, the output of SSP, when it turns up an error,

is completely undramatic since when something is wrong the

transformation most commonly does not apply at all and the

output is some intermediate structure. This circumstance

was especially unnerving while the SSP was being debugged

since it was not always easy to determine whether a rule

failed to apply because it would not or because it could not.

Summarizing, SSP has turned up errors of the fol-

lowing sort:

I. Transformational rule applies incorrectly.

2. Transformational rule fails to apply.

29

Reasons:

a. Traffic information incorrect, e. g., obligatory rule

marked optional.

b. Transformational rule stated incorrectly.

c. P-marker stated incorrectly.

Finally, mention should be made of the fact that SSP

operates in what might be called an automatic mode in trans-

formational generation whereby all obligatory transforma-

tions are tested against a P-marker without specification on

a derivation control card. Only optional rules are so speci-

fied. It is often the case, however, that linguistic attention

is focussed on particular transformations and the effects of

others are beside the point. For such cases, which arise

very often, we are developing a manual mode of operation

for the sentence synthesizing program which will implement

Grammar I. In this manual mode, the linguist will specify

all transformations that he wishes to be tested against a

particular P-marker. The manual mode provides the lin-

guist with less information than the automatic mode, but

such omitted information is often superfluous and can be

profitably sacrificed for speed.

-.... . . - naa- u~ m~m l~~ • -ul''m~----- -,•lwm .| l • l.

30

FOOTNOTES

1English Grammnar I was formally presented in P. S.
Rosenbaum and D. Lochak, "The IBM Core Grammar
of English," Specification and Utilization of a Trans-
formational Grammar, Scientific Report No. 1,
(IBM Corporation, Yorktown Heights, N.Y., P966).

2 Cf. N. Chomsky, Aspects of the Theory of Syntax (MIT
Press, Cambridge, Mass., 1965).

3 Cf. J. J. Katz and P. M. Postal, An Integrated Theory of
Linguistic Descriptions, (MIT Press, Cambridge, Mass.,
1964).

4 The need for daughter adjunction in Grammar I is an arti-
fact. This elementary transformation does not appear
in the transf":.mational rules of Grammar II.

5 Empirical justification for the cyclic principle is provided
in P. S. Plsenbaum, "The Empirical Basis of the
Cyclic F rin :iple," (forthcoming).

6 For a detailed discussion of noun phrase and verb phrase
complementation, cf. P. S. Rosenbaum, The Grammar
of English Predicate Complement Constructions, MIT
Doctoral Dissertation, (Cambridge. Mass., 1965).

IThe actual introduction of prepositions into P-markers is
not treated in Grammar I but is in Grammar I.

8 Cf. G. Lakoff and S. Peters, "Phrase Conjunction and

Symmetric Predicates," (forthcoming).

9 This embarrassing fact was kindly pointed out to us by
C. Valenti, C.F.X. Cf. his unpublished manuscript,
"Suggested Adjustments in the IBM Core Grammar,"
NDEA Summer English Institute, The Ohio State
University, 1966.

10For a grammar in which the constituent analysis is adopted,

cf. "English Preprocessor: English Grammar--Rules

and Examples," English Preprocessor Manial, MITRE
Corp., (May, 1965).

11The problem of exceptions is given its most complete treat-
ment in G. Lakoff, On the Nature of Syntactic Regularity,
Mathematical Linguistics and Automatic Translation,
Report No. NSF-16, (The Computation Laboratory,
Harvard University, Cambridge, Mass., 1965).

12P. Postal, "On So-called 'Pronouns' in English," (to appear
in F. Dineen, ed., Monograph Series on Languages andLinguistics Number 19, Georgetown University Institute
of Languages and Linguistics, Washington, D. C.).

13F. Blair, "Programming of the Grammar Tester," S -
fication and Utilization of a Transformational Grammar,
Scientific Report No. 1, (IBM Corporation, Yorktown
Heights, N. Y., 1966).

1 4 Rosenbaum and Lochak, op. cit., p. 1.

15The syntax notation employed in this report is a modified
Backus-Naur form. The symbols employed are interpret-
ed as follows: := (syntactic definition), () (metalinguistic
variable delimiters), I (alternation specifier), f1 (meta-
linguistic grouping br,.ckets), * (indefinite number),
0 (null).

16Cf. D. Bobrow, "METEOR: A LISP Interpreter for String
Transformations," THE PROGRAMMING LANGUAGE
LISP: Its 2Oeration and Applications, Informational In-ternational, Inc. (1964). In the present case $0 requires
the first pattern element (if either a literal or a pform)
to find a match among the left-hand descendants of
car[nodes]. In the absence of a $0, an initial $ is sup-
plied automatically.

1 7 The next contiguous node, N, of some node, N', is either
the right-hand sister of N' or, if N' has no right-hand
sister, the next contiguous node of the parent of N'.

isCf. Bobrow, op. cit., pp. 178-179.

12

I
19Rosenbaum and Lochak, .. cit., pp. 9-17.

2 0 Ibid., pp. 22-27.

2 1 Illustrative of possible improvements is S. Kuno's proposal
in "Polish Notational Representation of Phrase Markers
and Matching of Structural Index with Polish String,"
unpublished manuscript.

22For example, cf. G. A. Miller, E. Galanter, and K. H.
Pribram, Plans and the Structure of Behavior, (Henry
Holt, New York, 1960), pp. 145-148.

2 3 In other words, simply stated, does the subset of English
.° allow the user to say what he wants to say, albeit not

making full use of full glory of the English language?

24. S. Rosenbaum, A. Baldwin, J. Samsky, "On the Use-
ability and Learnability of a Transformationally Gener-

ated Subset of English," (forthcoming).

, 25
This requirement applies only to Grammar I. The theory

underlying Grammar II requires transformations to ap-
ply to all legitimate proper analyses "simultaneously"
as it were. After the application of a transformation,
the transformed P-marker is not reanalyzed for the
purpose of applying the same transformation on the same
cycle.

26 or a description of the design and implementation of a

computational aid for compiling a transformational lexi-
con, cf. D. Lieb-rman and D. Lochak, "Computer Sup-
port for Lexicon Development and Use," Specification
and Utilization of a Transformational Grammar, Scien-
tific Report No. 1, (IBM Corporation, Yorktown Heights,
N.Y., 1966).

APPENDIX I

Sample Deep Structure

z L 4 0 + +

0

AU 0
0 41

440 +4 N

0J 0 - .

0~

+4 +
Z .

APPENDIX II

Phrase Structure Rewriting Rules

for Grammar I

S ---- > # (PRE) NP AUX VP #

PRE ---- > (NEG) (Q)

AUX ---- > T (M)

---- > RES1

T .. > PASTI

VP ---- > (have en)(be ing) eP)

Ibe (ADJ)

PP ---- > PREP NP

MAN ---- > PREP P

NP ---- > (DET) N (S)

ART ---- > (WH){NDEF_ _ , DEFJ

t

v Il

APPENDIX III

Sample Lexicon 2 6

Syntactic Categor

(+N) boy (+ADJ) honest
(+V) slay (+M) must

Strict Subcategorization

Verbs (+V) Nouns (+N)

(+__NP S) tempt (+DET__S) fact

(+_NP) disappoint (+DET__) teapot

(+_PP) approve (+__S) it
(+__S) condescend (+_) John

(+) elapse

Inherent Subcategorization

Nouns (+N)

(+human) boy (+animate) mongoose

(+abstract) blame (-animate)

(-abstract) table

Selectional Subcategorization

Verbs (+V)

(+_ (+__S)) suppose

(+ (+__S) S AUX__) bother

(+__(DET) (+human) PREP (+__S)) remind

Adjectives (+ADJ)

(+ (+_S) SAUX__) obvious

!

APPENDIX IV

Transformational Rules

I. CYCLIC RULES

1. CP 1 Complementizer Placement 1

FT '

X (aC)] NP + be Y
La'N N+ have'

1 2 3 4 5 6====>

1 2 3 aC+ 4 5 6

2. CP 2 Complementizer Placement 2 OBI. TI
X [(+C)Jv (NP) NP+{beJ Y

1 2 3 4 5 6 7====>

1 2 3 4 +C+5 6 7

3. CP 3 Complementizer Placement 3 OB

X N [NP + Y] Z

1 2 3 4 5 6 7====>

1 2 3 that + 4 5 6 7

4. IE Identity Erasure OB

W (NP) X aC NP Y (NP) Z

1 2 3 4 5 6 7 8 9 1O====>

1 2 3 4 5 0 7 8 9 10

Condition: An NP. is erased by an identical NP. if andJ1 1

only if there is an S such that
n

(i) NP. is dominated by S
j n

• • '+• -- ' ['qI I l~l~li I| • I l • |.......

(ii) NP. neither dominates nor is dominated
I

byS

(iii) for all NPk neither dominating nor

dominated by Sn, the distance between

NP. and NPk is greater than the dis-Jk

tance between NP. and NP. where dis-
J I

tance between two nodes is defined in

terms of the number of branches in

the path connecting them.

5. 101 Indirect Object Inversion OP

X V {N to+NP Y

1 2 3 4 5 6 7====>

1 2 3+5 4 0 6 7

6. TO To Deletion OB

X V to NP (PREP) + NP Y

1 2 3 4 5 6 7 8====>

1 2 3 0 5 6 7 8

7. PASSIVE Passive OB

'PRE) NP 1 AUX V (PREP) NP2 X PREP P Y

1 2 3 4 5 6 7 8 9 10 11 12====>

1 2 7 4 be+en+5 6 0 8 9 3 11 12

Condition: 3 1 7

8. EXTRA Extraposition OP

X [(+__S)]N S Y

1 2 3 4 5 6====>

1 2 3 0 5 4+6

9. PROREP Pronoun Replacement OB

X [[(+_S)]N]NP (AUX(be en) V+ (MAN)) aC NP Y

1 2 3 4 5 6 7 8====>

1 2 6 4 5 0 78

10. WHA WH-Attraction OB
(PREP + [wH X]Np} Z~i #

U ART [NP W 1[WH XNP Y] z

1 2 3 4 5 6 7 89====>

1 2 3 6+4 5 0 7 89

11. RELPLACE Relative Placement OB

X ART S N Y

1 2 3 4 5 6 7====>

1 2 3 0 5+4 6 7

12. AUXFILL Auxiliary Filler OB

X T have

1 2 3 4 5 6====>

1 2 3+4 0 5 6

13. AG Agreement OB

(PRE) [(DET)[(aSg)]NX]N RPASTJ

2 2 3 4 5 6====>

1 2 3 4< aSg 5 6

Condition: 4 < 0

14. EVER Ever OP

X INDEF [(-human)]N WH INDEF N Y

1 2 3 4 5 6 7 89====>

1 2 3 4 5 6+ ever 789

15. REODEL Regressive Deletion a. OP

X AT (P b. OB
~~'[")Ni WH +INDEF+ 4 0 N NY

LNDEF N q~.eve r)

1 2 3 4 5 6 7 8====>

1 2 0 0 5 67 8

Condition: 4 =6

16. DE L F Definitization OB

X N [(PREP) + WH INDEF N Y] Z

1 2 3 4 5 6 7 8 9====>

1 2 3 4 DEF67 8 9

17. WHAG WH-AgreeDz ent OB

X W {DEF) (ever) [Fahuman)N] Y

1 2 3 4 5 6 7 8====>

1 2 3 4<ahuman 5 6 7 8

Condition: 4 < 0

18. PROGDEL Progressive Deletion OB

X N (PREP) + WH +DEF NN Y

1 2 3 4 5 6 7====>

1 2 3 4 0 6 7

Condition: 3 = 5

19. RELDEL Relative Deletion OP

X N (WHY]NP + + PRES ADJ Z

1 2 3 4 5 6 7====>

1 2 3 0 5 6 7

20. ADJPLACE Adjective Placement OB

X N ADJ Y

1 2 3 4 5 6====>

1 2 4+3 0 5 6

21. CDUP Complementizer Duplication OB

X aC NP Y

1 2 3 4 5 6====>

1 2 3 4+3 5 6

22. CNEG C Negative Placement OP

x ac be + T NEG Y

1 2 3 4 5 6 7====>

1 2 5+3 4 0 6 7

23. CTENSE C Tense OB

X aC ({V,))+ PAST Y

1 2 3 4 5 6====>

1 2 3 + have + en 4 5 6

24. TS Tense Suppression OB

Sx ac b(have + (en))((+V)) T Y #

1 2 3 4 5 6 7====>

1 2 3 4 0 6 7

25. CD Complementizer Deletion OP

x V [(+-S)] N aC NP Y

1 2 3 4 5 6 7 8====>

1 2 3 4 0 6 7 8

26. TAG Tag Question OP

NEG Q NP AUX VP Y

1 2 3 4 5 6 7 8====>

1 2 0 4 5 6 7 3+4+5+8

27. NEGPLACE Nt~gative Placement OB

NEG (Q) NP AUX X

1 2 3 4 5 6 7====>

1 0 3 4 5+2 6 7

28. NEGTAG Tag Negative Placement OP

X AUX NEG VP (S) Q NP AUX

1 2 3 4 5 6 7 8 9 10====>

1 2 3 0 5 6 7 8 9+4 10

29. NEGAUX Negative Auxiliary OP

X T + (have) NEG Y

1 2 3 4 5 6====>

1 2 3+4 0 5 6

30. QUES Question OB

SQ X {PREP + [WH + Y]NP} ZSI r WH + Y]NPI

1 2 3 4 5 6====>

1 4+2 3 0 5 6

3,. YESNO Yes-No Q'ajestion OB

X Q NP AUX Y

I ? 3 4 5 6 7====>

1 2 5+3 4 0 6 7

32. AF Affix OB
T- • NP

-T (+V)
X ing (+M) y

S~be!en havej

1 2 3 4 5 6====>

1 2 0 4+3 5 6

Condition: 5 = a terminal string G", (T, T, such

that - -C, ing, en, or T, and 2 = a termi-

nal string *1i *2, .' , n' such that n

(+V) or (+M).

33. PREPDEL Preposition Deletion 0]3

X PREP [not (+-] y

1 2 3 4 5 6====>

1 2 0 4 5 6

34. PD Pronoun Deletion OB

X [(+__S)N (to 4- NP) S Y

1 2 3 4 5 6 7====>

1 2 0 4 5 6 7

-35. AGDEL Agent Deletion OP

X [PREP + INDEF + [(+PRO)]N]MAN Y

1 2 3 4 5====>

1 2 0 4 5

36. THAT that Deletion OP

X ADJ} (NP) that Y]S Z

1 2 3 4 5 6 7 8===.>

1 2 3 4 0 6 7 8

37. VPCOMP VP Complement Placement OP

X MAN +C +have + VP Y
1 2 3 4 5 6====>

1 2 4+3 0 5 6

38. BEDEL be Deletion OB

X M be +C Y

1 2 3 4 5 6 7====>

1 2 3 0 5 6 7

39. MCDEL Modal Complementizer Deletion oE

X M +C Y

1 2 3 4 5 6====>

1 2 3 0 5 6

40. QDEL Q Deletion OB

x Q Y

1 2 3 4 5====>

1 2 0 4 5

41. ERASE Boundary Erasure OB

x
1 Z 3====>

0 2 0

II. POST-CYCLIC RULES

42. PAST Past OB

x +V PAST Y+()J+

1 2 3 4====>

1 2 ed 4

43. MTDEL Modal Term Deletion OB

X (+M) PRES Y

1 2 3 4====>

1 2 0 4

44. PLUDEL Plural Deletion OB
x (+V) [-Sg] PRES Y

1 2 3 4====>

1 2 0 4

45. NUM Number OB

X [(-Sg)] N Y

1 2 3====>

1 2+s 3

46. NUAG Number Agreement OB

X (+V) +Sg Y

1 2 3 4====>

1 2 s 4

47. CONTR Contraction OB

X [Y NEG]AUX z

1 2 3 4====>

1 2 n't 4

48. NEGSPELL Negative Sp 1linR OB

X NEG Y

1 2 3====>

1 not 3

49. DOI Do 1 OB

X I I aSg]PAST Y]AUX Z

1 2 3 4====>

1 did 3 4

50. DO 2 Do 2 OB

X I [+Sg]PRES Y]AUX Z

1 2 3 4====>

i does 3 4

51. DO 3 Do 3 OB

X I [-Sg]PR-S Y]AUX Z

1 2 3 4====>

1 do 3 4

52. BE I Be 1 OB

X be +Sg]PRES Y

1 2 3 4====>

1 0 is 4

53. BE 2 Be 2 OB

X be -SgIPRES Y

1 2 3 4====>

0 0 are 4

54. BE 3 Be 3 OB

X be [+SgZPAST Z

1 2 3 4====>

1 0 was 4

55. BE 4 Be 4 OB

x be [-Sg]9AST Y

1 2 3 4====>

1 0 were 4

56. HAVE 1 Have 1 OB

X have [+Sg]PRES Y

2 2 3 4====>

1 0 has 4

57. HAVE 2 Have 2 OB

X have YSg]PRES Y

1 2 3 4====>

1 0 have 4

58. HAVE 3 Have 3 OB

X have PAST Y

2 2 3 4====>

1 had 4

59. WHPD I WH Pronoun Deletion I OP

X DEF +PRO)1 WH+ Y
I (+Sg) 1 N

1 2 3 4====>

60. WHPD 2 WH Pronoun Deletion 2 OB

X WH + INDEF + (ever) (+Pg) j
JN

1 2 3 4====>

1 2 0 4

61. WHDEL WH-Deletlon OP
SX N [WH + Y] NP NP Z

1 i 2 3 4 5====>

1 2 0 4 5

62. DEFTHAT Definite that OB

X DEF WH + Y
1 2 3====>

I that 3

63. WH i WH i OB

X [WH [(+human)]fDEF ']NP Y
UNDEFJ

I 2 3 4====>

1 0 who 4

64. WH 2 WH 2 OB

X WH + DEF Y

I 2 3====>

1 which 3

65. WH 3 WH3 OB

X WH + INDEF Y

1 2 3====>

I what 3

66. PLADEL Plural Article Deletion OB

X INDEF (-Sg)]N Y

1 2 3 4====>

S3 4

67. C i C i OB

X +C NP Y

1 2 3 4====>

I for 3 4

68. C2 C 2 OB

X +C Y

1 2 3====>

1 to 3

69. C 3 C 3 OB

X NP -C Y

1 2 3 4====>

1 2 's 4

70. C 4 C 4 OB

x -c x

1 2 3====>

1 ing 3

71. BY By OB

X [PREP NP]MAN Y

i 2 3 4====>

"1 by 3 4

72. INDEF Indefinite OB

X INDEF Y

1 2 3====>

i a 3

73. DEF Definite OB

x DEF Y

1 2 3====>

the 3

APPENDIX V

Sentence Types Contained in English I

1. the boy likes the girl

2. the boys like the girl

3. the boy liked the girl

4. the boy does not like the girl

5. the boy will like the girl

6. the boy would like the girl

7. the boy will not like the girl

8. the boy is admiring the girl

9. the boy isn't admiring the girl

10, the boy has been admiring the girl

H1. the boy will have been admiring the girl

12. does the boy like the girl?

13. doesn't the boy like the girl?

14. John likes the girl doesn't he?

15. John does not like Mary does he?

16. is John admiring Mary?

17. the books were purchased by John

18. must Mary be tormented by John?

19. John gave the book to Mary

20. John offered Mary the book

21. the book was offered to Mary by John

22. Mary was offered the book by John

23. who sleeps?

24. what boy sleeps?

25. which things slip?

26. what slips?

27. what book has John not taken?

28. about what did John speak?

29. the boy who must leave will leave

30. the book of which John speaks is awful

31. the book John speaks of is awful

32. John touched that which annoys Bill

33. Bill can visualize what will fall

34. whatever falls will bounce

35. a tall boy arrived

36. which tall boy did John see?

37. John would like for Mary to leave

38. John wants Mary to leave

39. John wants Mary to be loved by Bill

40. John prefers for Bill not to leave

41. Bill would prefer for John not to have dreamed

42. for John not to drown would be preferred

43. it is required for John to stand

44. Bond was believed to be dead by Goldfinger

45. John loves to run

46. John likes to be taken

47. John thinks Bill to be silly

48. John decided for Bill to represent Harry

49. John decided on Bill to represent Harry

50. John appears to have fallen

51. it embarrasses Bill to trip

52. John may resemble Bill

53. John dislikes Bill's annoying Mary

54. John dislikes Bill annoying Mary

a WI

55. John dislikes annoying Mary

56. John decided on going

57. John thinks that Bill will go

58. John thinks Bill smokes

59. that Bill smokes was mentioned by John
60. Bill mentioned to Mary that John smokes
61. it was mentioned by John that Bill smokes
6z. Bill tells Mary John smokes

63. Bill reminded Mary to go

64. John tempted Mary to go
65. John condescended to go

66. John stops wondering

APPENDIX VI

Phrase Structure Rewriting Rules

for Grammar II

S ---- > # T NP VP #

VP ---- > VB (NP) ({sP})

NP NP-- > (S.

UNCLASSIFIED
-- Security Classification

•0 .,NVII M..UT' IsL. R DO AT USD
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

I ORIGINATING ACTIVIIY (Corso ae Wtor) 2a- REPORT SECURITY CLASSIFICATION

International Business Machines Corp. UNCLASSIFIED
T. J. Watson Research Center 2M GROUP

P. 0. Box 218, Yorktown Heights, N.Y. 10598
3. REPORT TITLE

"SPECIFICATION
AND UTILIZATION

OF A TRANSFORMATIONAL GRAMMAR"
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) A16d
Final Scientific Report July 1965-September 1966 23Nov. 1966

S. AUTNOIRS) (Last nown, first name. snsiil

Rosenbaum, Peter S.
Blair, Fred

I- REPORT DATE 7a. TOTAL NO. OF PAGES 7 NO. OF REFS

October 1966 53 16
$61. CONTRACT OR GRAN4T NO. 9a. ORIGINATOR'S REPORT NUMBEWRS)

AF 19(628)-5127
I. PROJECT AND TASK NO.

4641,02
C. DOO ELEMENT 9b. OTHER ppOR T NyirS) (Any other numbers Ma/nt y be62405304 asig,,UPr.,,e",,port
D. ODD SUBELEMENT

674641 AFCRL- 66-762
10. AVAILABILITY/LIMITATION NOTICES

Distribution of this Document is Unlimited.
II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Hq. AFCRL, OAR (CRB)
United States Air Force

__L._G. Hanscom Field, Bedrd, _ __s_
13. ABSTRACT K/

h-s -.... t summarizes re~earth
carried ou.Vat-th'-'-. 3.WVa-t-P.1 Re Hi-IGsatsi4 in three areas of computational
linguistics. These are 11) the design and

development of a transformational grammar I
for a subset of grammatical sentences in
English' j2) the implementation of this

grammar in terms of a sentence synthe-
sizing program written in LISP 1. 5 and

/3) the use of sentence synthesizing programs
for transformational grammars generally.

FoRM 1473'1 JAN 64
UNCLASSIFIED

Secusity Classification

UNCLASSIFIED
&Secwity Classification

14.. LINK A LINK Z LINK CI __ -L _ I

"KY CLE WT -.E- W T

Transformational Grammar- English
Grammar II Phrase Structure Rewriting Rule

Transformational Rule
I Deep Structure

Surface Structure
P-marker
Sentence Synthesizing Program-SSP
Fast-Fail Procedure
Structure Index
Elementary Transformation
Proper Analysis
Lexicon

INSTRUCTIONS

1. ORIGIhATING ACTIVITY: Enter the name and address 10. AVAILABILITY/LIMITATION NOTICES: Fnter any limi-
of the contractor, subcontractor, grantee, Departnment of tations on further dissemination of the ,eport, other than those
Defense activity or other organization (corporate author) imposed by security classification. using standard statements
issuing the report. such as:

2a. REPORT SECURITY CLASSIFICATION: Enter the over- (I) "Qualified requesters may obtain copies of thisall security classification of the report. Indicate whether report from DOC.""Restricted Data" is included. Marking is to be in accord- (2) "Foreign announcement and (jtssemnnatzon of thk~

ance with appropriate security regulations. report by DDC is not authorized."
2b. GROUP: Automatic downrading is specified in DoD (3) "U. S. Government agencies ma) ,btain copies of
Directive 5200.10 and Armed Iorces-ndustrial Manual. this report directly from DDC. Other qualia'ied DDC
Enter the group number. Also, when applicable, show that users shall request through
optional markings have been used for Group 3 and Group 4
as authorized. ""

Enter the complete report title in all (4) "U. S. military agencies may obtain copies of this3. REPORT TITLE: Enlreport directly from DDC. Other qualified users
capital letters. Titles in all cames should be unclassified, shall request through
if a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title. (5) "All distribution of this report is controlled. Quail-

4. DESCRIPTIVE NOTES: If appropriate, enter the type of fied DDC users shall request through
report, e.g., interim, progress, sumawry, annual, or final.Give ~ I th c:sv dtswe specific reporting period isivee nc!us he If the report has been furnished to the Office of Technical
coveted. Services, Departmernt of Commerce, for sale to the public, indi-

S. AUTHOR(S): Enter the name(s) of autht, 's) as shown on cate this fact and enter the price, if known.
or in the report. Enter las" name. first name, middle initial.
If military, show rank and branch of service. The name of 11. SUPPLEMENTARY NOTES: Use for additional explana-
the principal author is an absolute minimum requirement. tory notes.

Enter the date of the report as day, 12. SPONSORING MILITARY ACTIVI'IY: Enter the name ofm6. REPORT DATE: yer tha n one re appeay, the departmental project office or laboratory sponsoring (pay-
month. year. or month, year. If more than one date appears iag for) the research and development. Inc ude address.

7a. TOTAL NUMBER OF PAGES: The total page count 13. ABSTRACT: Enter an abstract giving a brief and factual

should follow normal paoination procedures, i.e., enter the summary of the document indicative of te reprt, even
number of pages containing information, hohit may also appear elsewhere in the body o! the tech-nbop so ii ni report. If additional space is required, a continuationIt 7b. NUMBER OF REFERENCES: Enter the total number of sheet shal! be attached. -
references cited in the report. It is highly desirable that the abstract of classified re-
8a. CONTRACT OR GRANT NUMBER: If approp iate, enter prrts be unclassified. Each paragraph of the abstract shall
the applicable number of the contract "r grant under which end with an indication of the military security classification
the report was written, of the information in the paragraph. represented as (TS). (S).

8c, & 8d. PROJECT NUMBER: Enter the appropriate (C), or (U).
military department identification, such as project number, There is no himitation on the length of the abstract. flow-
subproject number, system numbers, task number, etc. ever, the suggested length i- from 150 to 225 words.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi- 14. KEY WORDS: Key words are technically meaningful terms
cial report number by which the document will be identified or short phrases that c aracterize a report and may be used as
and controlled by the originating activity. This number must index entries for cataleging the report. Key words must be
he unique to this report. s.-lected so that no security classification is required. Identi-
9b. OTHER REPORT NUMBER(S): If the report has been hers, such as equipment model designation, trade name, mili-
assig d any other report numbers (either by the originator tary project code namne, geographic location, may be used as
or by she sponsor). also enter this number(s), key words but will be Iofowed by an idication of technical

context. The assignment of links, rules, and weights is
___ optional.

UNCLASSIFIED
.ic-uritryFclaifiication

-t 2'• -• -• +_

.4b

